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A series of numerical simulations were performed in order to study liquid metal MHD natural convection
in a vertical cylindrical container with a sinusoidal temperature distribution at the upper wall and the
other surfaces being adiabatic. Starting from the basic hydrodynamic case, the effect of vertical (axial)
and horizontal magnetic fields is assessed. Depending on the magnitude of the Rayleigh and Hartmann
numbers, both turbulent and laminar (azimuthally symmetric or not) flows are observed. The results
show that the increase of Rayleigh number promotes heat transfer by convection while the increase of
Hartmann number favors heat conduction. The vertical magnetic field reduces the Nusselt number more
than the horizontal. The circulation patterns for the most convective cases are confined close to the top
corner of the container with the simultaneous formation of a secondary flow pattern at the bottom cor-
ner, while for the more conductive cases only one circulation pattern exists covering the entire domain.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Magnetohydrodynamic natural convection in cylindrical con-
tainers are of great importance considering the number of techno-
logical and industrial applications involved. Such configurations
include the production of steel, aluminum, high performance
super-alloys or crystals [1]. In the case of crystal growth, for exam-
ple, magnetic fields are used to suppress the convective motion in-
duced by the arising strong fluxes in order to control the flow in
the melt and consequently the crystal quality [2]. Except of the
industrial processing applications where the flow in cylindrical
containers are important, another case with strong theoretical
interest is the flow of liquid metals in fusion blankets [3].

A number of experimental and theoretical studies have been
performed for these flows. Oreper and Szekely [4] and Kim et al.
[5] numerically simulated the flow in a vertical Bridgman–Stock-
barger configuration and demonstrated the influence of the applied
magnetic field on the intensity of convection in the melt. Chandra-
sekhar [6] studied the influence of a vertical magnetic field on con-
vection arising in a fluid layer heated from below, while Karcher
et al. [7] investigated the effect of a vertical magnetic field on the
convective heat transfer in a liquid metal heated locally from
above. Baumgartl and Mueller [8] compared three MHD models
ll rights reserved.

: +30 24210 74085.
.

of different complexity in order to calculate the effect of magnetic
damping of the fluid flow in a cylindrical cavity heated from below.
Fedoseyev et al. [9] performed a numerical investigation for ther-
mal convection flow in a semiconductor melt with strong static
magnetic field and compared three different numerical models.

Periodic wall heat fluxes are of great interest in engineering
applications such as the design of cooling tubes for nuclear reactors
or heat exchangers of Stirling engines [10]. The sinusoidal wall
heat flux is one of the simplest types of periodic heating and is
encountered in many studies. Sarris et al. [11] investigated numer-
ically the flow and heat transfer in a two-dimensional square cav-
ity with a sinusoidal temperature profile at the upper wall and
adiabatic conditions on the bottom and sidewalls. Pearlstein and
Dempsey [12] studied a laminar tube flow subjected to axially
varying wall heat flux in the form of a sinusoidal or hyperbolic tan-
gent distribution. Barletta and Zanchini [13] studied the stationary
and laminar forced convection in a circular tube with a sinusoidal
axial distribution of wall heat flux, evaluating the heat transfer via
the temperature fields and local Nusselt numbers. Dalal and Das
[14] studied a steady laminar natural convection in a two-dimen-
sional enclosure with one wavy and three flat walls with a sinusoi-
dal top wall temperature profile. Velocity and temperature fields
were calculated while the heat transfer was assessed via the Nus-
selt number. The effect of Rayleigh number, amplitude and number
of undulations on the flow pattern and heat transfer was studied.
The heat transfer mode remains conductive up to Ra ¼ 103 and,
for greater Ra values, convection starts to dominate as it is con-
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Fig. 1. Flow geometry and boundary conditions.

Nomenclature

B0 magnitude of the external magnetic field (kg/(s2 A))
C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

o þ z2
o

p
distance of the circulation center from the origin

(m)
g gravity acceleration (m/s2)
H height of the cylinder (m)
Ha ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
r=qm

p
B0R Hartmann number

Nu Nusselt number
p fluid pressure (N/m2)
Pr ¼ m=a Prandtl number
r; h; z spatial coordinates
R radius of the cylinder (m)
Ra ¼ gbDTR3=ma Rayleigh number
t time (s)
u non-dimensional velocity vector
uz;ur ;uh non-dimensional axial, radial, circumferential velocity

components

Greek letters

a thermal diffusivity (m2/s)
b coefficient of thermal expansion (1/K)
m fluid kinematic viscosity (m2/s)
q fluid density (kg/m3)
r electric conductivity (ms3 A2/kg)
U electric potential (m2 kg/s3 A)
W non-dimensional stream function

Subscripts

c cold
o position of circulation center
w indicating a wall
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cluded from the average Nusselt number which remains constant
for Ra up to 103 and then starts changing. Because of the nature
of the imposed boundary conditions, there are two large vortices
formed. Bilgen and Ben Yedder [15] carried out a numerical study
of natural convection in rectangular enclosures, with one vertical
wall heated and cooled sinusoidally and all the others insulated.
Two cases were considered: (a) the lower part of the wall is heated
while the upper part is cooled and (b) the upper part is heated and
the lower part is cooled. The heat transfer was studied in order to
determine the thermal penetration in the enclosure. It was found
that the penetration approaches 100% at high Rayleigh numbers
in the first case, while in the second it approaches about 70%.

The present work was motivated by the numerical and experi-
mental work of Karcher et al. [7] where the electron beam evapo-
ration of liquid metals was studied. In this industrial application, a
localized temperature distribution at the surface of the liquid me-
tal is applied and the external magnetic field is used for control and
stabilization of the fluid motion and heat transfer. Similarly to Kar-
cher et al. [7], the flow of a liquid metal (small Prandtl number,
Pr = 0.0321) placed in a vertical cylindrical container is presently
considered. The upper surface has a sinusoidal temperature profile
and the other surfaces are considered adiabatic. The effect of the
magnetic field is assessed for the cases of uniform vertical and hor-
izontal magnetic fields. The primary objectives of the present study
are, firstly to establish the basic hydrodynamic flow and secondly
to study the effect of the magnetic field on the flow and heat trans-
fer. Numerical results were obtained for Rayleigh numbers in the
range 102–106 and for Hartmann numbers from 0 to 50. Both un-
steady and laminar flows are observed depending on the combina-
tion of Rayleigh and Hartmann numbers. The results are presented
in the form of streamlines, isotherms and Nusselt number
distributions.

2. Problem description and model setup

A cylindrical container, shown schematically in Fig. 1, is consid-
ered with a radius R and height HðH=R ¼ 1Þ. A sinusoidal tempera-
ture distribution TwðrÞ ¼ Tc þ DT

2 ð1 þ cosðpr=RÞÞ is applied on the
upper wall while the lower and cylindrical surfaces are assumed
to be adiabatic. Tc is the temperature at the corner formed by the
upper wall with the cylindrical wall, DT is the difference between
the maximum and minimum temperatures at the upper wall. For
the magnetohydrodynamic case a vertical (axial) or horizontal uni-
form magnetic field of magnitude B0 is applied. The low magnetic
Reynolds number model for the magnetohydrodynamic flow cases
and the Boussinesq approximation for buoyancy are also adopted
[16,17].

The magnetohydrodynamic equations were made dimension-
less using as characteristic quantities the radius R of the cylinder,
the reference velocity u0 ¼ a=R, the temperature difference DT
and the magnitude of the external magnetic field B0. Consequently,
we have ðr�; z�Þ ¼ ðr; zÞ=R for the radial and axial coordinates,
p� ¼ pR2=qa2 for the dimensionless pressure, u� ¼ u=u0 for the
velocity vector with components uz;ur and uh for the axial, radial
and azimuthal components, respectively. We also have
T� ¼ ðT � TcÞ=DT for the temperature, t� ¼ ta=R2 for the time,
U� ¼ U=aB0 for the electric potential and J� ¼ JR=raB0 for the cur-
rent density; where the quantities without the asterisks are the
dimensional ones, q is the fluid density, a is the thermal diffusivity
and r the electrical conductivity. Thus, the governing equations
may be written in dimensionless form (omitting the asterisks):

r � v ¼ 0; ð1Þ
ou
ot
þ u � ru ¼ �rpþ RaPrTez þ Prr2uþ PrHa2ðJ� eBÞ; ð2Þ

oT
ot
þ u � rT ¼ r2T; ð3Þ

J ¼ �rUþ u� eB; ð4Þ
r2U ¼ r � ðu� eBÞ; ð5Þ
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where ez is the unit vector in the axial direction, eB is the unit vector
in the direction of the external magnetic field, and the gradient
operator in cylindrical coordinates is given by r ¼ o

or þ 1
r

o
ohþ o

oz.
The flow depends on three dimensionless parameters: the Ray-

leigh number (Ra), the Prandtl number (Pr) and the Hartmann
number (Ha) which are defined as:

Ra ¼ gbDTR3

ma
; Pr ¼ m

a
; and Ha ¼ B0R

ffiffiffiffiffiffi
r
qm

r
; ð6Þ

where g is the gravity acceleration, b the volumetric thermal expan-
sion coefficient and m the kinematic viscosity of the fluid.

As for the boundary conditions, the liquid metal obeys the no-
slip condition at the walls, uz ¼ ur ¼ uh ¼ 0 for z ¼ 0 and 1 or
r ¼ 1, and the symmetry condition along the cylinder axis. The bot-
tom and cylindrical walls are considered adiabatic, oT=on ¼ 0 for
z ¼ 0 or r ¼ 1, and the upper wall has a temperature distribution,
T ¼ 1

2 ð1þ cosðprÞÞ for z ¼ 1.
In order to study the heat transfer characteristics of the fluid,

the local Nusselt number at the upper wall is calculated via the
expression:

Nuðr; hÞ ¼ ½�oT=oz�z¼1: ð7Þ

Then, an averaged local Nusselt number on the azimuthal direction
can be defined as NuðrÞ ¼ 1

2p

R 2p
0 Nuðr; hÞdh. It must also be noted

that a stream function W is calculated from the velocity fields aver-
aged in the azimuthal direction via the definition: ur ¼ oW=oz,
assuming that W ¼ 0 at r ¼ 1 and z ¼ 0.

3. Numerical details

Numerical simulations were performed for various Rayleigh
and Hartmann numbers. While most of the studied cases result
in laminar flow, the higher Rayleigh number cases (with or without
magnetic field) result in turbulent flow. The direct numerical
method and the fine grid used in the study are able to capture most
of the turbulent dynamics. The governing Eqs. (1)–(5) were discret-
ized in a staggered non-uniform mesh with second-order accurate
finite difference schemes following the same procedure as in [18].
The resulting system of algebraic equations was solved with a frac-
tional step approach [19] where a semi-implicit scheme was used
for the time integration. Initially, a non-solenoidal velocity field is
evaluated and is used in the calculation of an intermediate pres-
sure field. In the second step, by using both intermediate fields,
the solenoidal velocity field and the pressure field are obtained.
The diffusion terms were advanced in time with a Crank–Nicolson
method, while the non-linear, the buoyancy and Lorentz force
terms with an economic third-order Runge–Kutta method
[18,20,21]. The Poisson equations for the pseudo-pressure and
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Fig. 2. Comparison of the present model with the results of Sarri
the electric potential (located at the center of each computational
cell) were solved using a transform method with modified wave-
numbers corresponding to the second-order central difference
scheme, together with tridiagonal matrix inversion using the FISH-
PACK library [22].

The present numerical method was tested successfully against
the numerical results of Sarris et al. [11] and Karcher et al. [7].
There are some differences between these two studies and the
present flow. In Sarris et al. [11] the study is limited only to the
hydrodynamic flow and it refers to an orthogonal cavity in which
the upper surface is at sinusoidal temperature and the other sur-
faces are considered adiabatic. This work was used to verify the
thermal boundary conditions. In Karcher et al. [7], a cylindrical
geometry is considered in which the upper surface is heated locally
close to the axis, with the rest of the surface being isothermal, and
also an external homogeneous magnetic field is applied in the axial
direction. Fig. 2a presents a comparison of the present results with
those of reference [11] and show that the most sensitive quantity
to the grid arrangement (i.e. local Nusselt number at the upper sur-
face) is very closely predicted also by the present model. In Fig. 2b,
a comparison is presented between the results of this model and
those of reference [7] in terms of the maximum value of the tem-
perature versus the Hartmann number, with very good agreement.

For a properly resolved direct numerical simulation, especially
in the case of turbulent or MHD flow, the features of the specific
flow, heat transfer and boundary layers must be considered. In par-
ticular, the increase of Ha results to thinner Hartmann layers at the
walls normal to the magnetic field of thickness � 1=Ha, while the
increase of Ra results to thinner boundary layers and smaller Kol-
mogorov and Batchelor scales. All these requirements were taken
into account in the present numerical simulations by using the
analysis proposed by Grötzbach [23] where the appropriate Kol-
mogorov scale, g, can be a function of Nu for fluids with Pr < 1.
The value of the grid sizing depends on Nu which is given for
MHD natural convection flows according to Aurnou and Olson
[24] by Nu / ðRa=Ha2Þ

1
2. As a result, non-uniform grids were used

for the simulation of the cases Ra ¼ 102 to 106. More specifically,
a grid of 49� 49� 49 cells was used in the cases Ra ¼ 102 to
104;65� 65� 65 cells for Ra ¼ 105 and 97� 97� 97 cells for
Ra ¼ 106 in the azimuthal, radial and axial directions, respectively.
It must be noted that for Ra 6 105, the resulting flow is laminar and
axisymmetric in the hydrodynamic case. Also when the imposed
magnetic field is aligned with the axial direction, the flow is axi-
symmetric but not in the case of horizontal magnetic field or tur-
bulent flow. Finally, it should be noted that, unless it is stated
differently, all the quantities for the turbulent cases shown here
correspond to azimuthally averaged fields. In the case of turbulent
flows the quantities are time averaged when the flow is stationary.
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Table 1
Grid independence test for the case of axial magnetic field ðRa ¼ 105;Ha ¼ 25Þ

Grid: 65� 65� 65 81� 81� 81 97� 97� 97 121� 141� 141

ur;max 10.201 10.184 10.193 10.146
uz;max 5.757 5.764 5.766 5.743
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The above requirements for the construction of the grid are
tested by performing also a grid independence test. For this pur-
pose, the case of Ra ¼ 105 and Ha ¼ 25 was chosen and an axial
magnetic field was applied. The range of the grids used in these
tests and the results of each case are presented in Table 1. The
comparison of the maximum values of the radial and axial velocity
components indicates that the changes are smaller than 0.5% and
thus the grid selection is appropriate.

4. Results and discussion

4.1. Basic hydrodynamic flow

In Figs. 3–7, the effect of the Rayleigh number is demonstrated
in terms of the stream function, velocity and temperature fields,
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Fig. 3. Azimuthally averaged stream function (left) and temperature distribut
and the local Nusselt number distribution. For Ra ¼ 104 and 105,
the flow is laminar and axisymmetric. When the Rayleigh number
increases to 106, the flow becomes turbulent resulting to higher
velocity and temperature gradients. In comparison to the simula-
tions of Sarris et al. [11], the present flow can become turbulent
at a lower Rayleigh number because of the low Prandtl number
of the fluid used.

In Fig. 3, the stream function (left column) and isotherm distri-
butions (right column) are shown for the hydrodynamic cases with
Ra ¼ 104;105 and 106 (top to bottom), respectively. For Ra ¼ 106

the flow is turbulent, and the presented distributions correspond
to azimuthally and time averaged fields. It is observed that the in-
crease of the Rayleigh number enhances the motion of the fluid as
indicated by the higher values of the stream function. The fluid is
ascending near the axis of the cylindrical cavity, due to the higher
temperature of the top surface, it then travels towards the edges
and it descends along the vertical (cylindrical) wall. In the case
of Ra ¼ 104 the flow is characterized by one circulation zone filling
all the domain, while for Ra ¼ 105 a secondary circulation appears
near the corner of the vertical wall with the bottom of the cavity.
The intensity of the secondary circulation is significantly lower
but it increases with the increase of the Rayleigh number. As a con-
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sequence, there are two extremes of the stream function for
Ra ¼ 105 and 106, indicating two opposite rotating circulation pat-
terns. This is confirmed in Fig. 4 where the distance C of the centers
of the circulations from the origin ðz ¼ 0; r ¼ 0Þ are presented ver-
sus the Rayleigh number. It should be noted that C is defined as
C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

o þ z2
o

p
, where ro and zo are the coordinates of the center of

the circulation. The increase of the Rayleigh number results (as
in Sarris et al. [11]) in an increase of the local convection heat
transfer (heating or cooling) from the top surface. As a conse-
quence hot fluid is confined very close to the upper wall and the
penetration of heat in the bulk fluid is more difficult. The thinner
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Fig. 7. Spectral distribution of the averaged kinetic energy versus the azimuthal wave n
0.5) for Ra ¼ 106.
thermal boundary layers and their interaction with the adiabatic
cylindrical sidewall are responsible for the flow separation and
the formation of the secondary circulation.

In Fig. 5, a comparison is shown of the axial distribution of the
radial velocity at r ¼ 0:8 for Ra ¼ 103;104 and 105. For Ra ¼ 103,
the radial velocity is very small. As the Rayleigh number takes
higher values, the motion of the fluid is enhanced and conse-
quently the velocities are becoming higher while their distribution
remains almost similar in shape. It is interesting to observe that
the velocities in the lower part of the geometry, and more specifi-
cally at dimensionless height z 6 0:25, are taking values very close
to zero. In the upper part of the domain, two regions are formed
where the velocity changes sign from positive to negative. Particu-
larly the sign is negative for 0:25 < z < 0:7 and positive for
0:7 < z < 1. Close to the points z ¼ 0:25, 0.7 and 1.0, the velocities
are almost equal to zero.

The increase of Ra has a significant effect on the local Nu distri-
bution at the upper wall as shown in Fig. 6. Because of the higher
temperature gradients developing as the temperature difference is
becoming larger, the absolute values (heating or cooling) of the lo-
cal Nu increase, while the shape of the distribution remains almost
the same. Thus, the increase of the Rayleigh number favors the
convection heat transfer mechanism against conduction. It should
be noted that, because of the use of adiabatic conditions at the
sidewall and the bottom of the container, the average Nu is zero
in all cases, for steady state condition.

For Ra ¼ 106, the flow becomes turbulent as indicated by the
spectral distribution of the averaged kinetic energy versus the azi-
muthal wave numbers in Fig. 7a. For the calculation of the energy,
only contributions of the bulk flow, away from the walls, were con-
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sidered. Moreover, the temporal variation of the radial velocity at
the position (h: 180�, r: 0.5, z: 0.5) is changing rapidly as shown
in Fig. 7b.

4.2. Vertical (axial) magnetic field

When a vertical (axial) magnetic field is imposed, some inter-
esting changes are observed in the motion of the fluid and the
resulting heat transfer. In the case of turbulent flow, the presence
of the magnetic field results in the stabilization of the flow turning
it to laminar and axisymmetric. In general, the magnetic field sup-
presses the fluid motion and reduces the rate of heat transfer. In
Figs. 8 and 9, streamlines and isotherms are presented for
Ha ¼ 10;25 and 50, and for Ra ¼ 104 and 105, respectively. It is ob-
served that the increase of the magnetic field strength results to
the damping of the fluid motion as it is indicated by the reduced
values of the stream function. This behavior of the Lorentz force
is known, Davidson [3], and can also explain the distribution of
the isotherms. As the Hartmann number increases, the tempera-
ture gradients become less abrupt and the convection effects be-
come less intense resulting to smaller velocities. Thus, the
increase of the magnetic field favors the conduction heat transfer,
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which dominates at higher Ha values. As a result of the more ex-
tended and slower circulating flow, the location of the center of
the circulation is moving to the position where convection sets
on (i.e. forms one toroidal vortex aligned in the h direction with
its center in the mid cross-section of the container). For Ra ¼ 104,
the above phenomenon is vigorous until the Hartmann number
reaches the value 25 and for greater values thereon it is weaken,
showing no significant change in the flow pattern. This means that
the center of the circulation remains almost at the same position
and conduction is the dominant heat transfer mechanism. This is
confirmed in Fig. 10a where the distance of the center of the circu-
lation from the origin is presented versus the Hartmann number. In
Fig. 10b, the same distance is presented for the case of Ra ¼ 105. In
both cases, the center of the circulation with the increase of the
Hartmann number follows the same trend. Another prominent re-
sult of the influence of the magnetic field is the disappearing of the
secondary circulation with increasing magnetic field. As Fig. 10b
shows for the case of Ra ¼ 105, two circulation regions appear in
the flow for Ha < 20 but only one survives at Ha > 20.

For the case of Ra ¼ 106 and Ha ¼ 0, the flow is turbulent and as
Ha increases the flow is stabilized and becomes laminar. In Fig. 11a
and b the time variation of the axial and the radial velocity compo-
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Fig. 9. Streamlines (left) and isotherms (right) for Ra ¼ 105 and for Ha ¼ 10 (upper), 25 (middle) and 50 (lower).
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nents, respectively, are presented at the position (h: 180�, r: 0.5, z:
0.5) for Ha = 0, 10, 25 and 50. It is clearly shown that the increase of
Ha results in the minimization and, for higher Ha values, to the
vanishing of the velocity fluctuations. It must be noted that when
the flow is becoming laminar due to the applied magnetic field par-
allel to gravity, it retains its axisymmetry. For the monitoring point
of Fig. 11, the increase of Ha results progressively in higher mean
velocities for the turbulent cases. However, for higher Ha values,
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the flow is laminarized and the damping effect of the magnetic
field reduces the fluid velocities.

Regarding the heat transfer mechanism, Figs. 8 and 9 show that
the increase of the magnetic field results in smoother temperature
gradients and thus, the local Nusselt number should be reduced. In
Fig. 12a the local Nusselt number distribution is presented for
Ha ¼ 10;25 and 50 at Ra ¼ 105 confirming the above observation.
In Fig. 12b the same distribution is depicted for Ra ¼ 103;104 and
105 at Ha ¼ 25, showing the increase of the Nusselt number as
the Rayleigh number increases.

4.3. Horizontal magnetic field

When a horizontal magnetic field is applied, an interesting dif-
ference takes place in contrast to the hydrodynamic and the verti-
cal magnetic field cases. As shown above, in the laminar
hydrodynamic cases the flow retains an azimuthal symmetry
which is also true in the cases where an axial magnetic field is ap-
plied. When the magnetic field is applied in the horizontal direc-
tion the above axisymmetry is not present anymore. More
specifically, jets of the descending fluid are developing near the
walls parallel to the magnetic field, while near the walls normal
to it the fluid decelerates. Fig. 13 shows the regions near the max-
imum and minimum values of the axial velocity isosurfaces, for the
cases Ra ¼ 104 (upper) and Ra ¼ 105 (lower) for Ha ¼ 0 (left) and
Ha ¼ 50 (right) and confirms the above observation. For the hydro-
dynamic case, the isosurfaces form ascending and descending axi-
symmetric rings. Because of the pair of jets formed near the walls
parallel to the horizontal magnetic field, the fluid also ascends near
the axis of the container forming a pair of jets.

The loss of the axisymmetry is a combined result of the mag-
netic field because of the formation of the Hartmann and side lay-
ers near the walls normal and parallel to the magnetic field,
respectively. Their thickness is a function of the Hartmann number,
i.e. � 1=Ha and � 1=Ha2 for the Hartmann and the side layer,
respectively. More specifically in the Hartmann layers the motion
of the fluid reduces in larger degree than in the side layers. As a
consequence the azimuthal symmetry of the flow is lost. A thin
Hartmann layer is formed near the h ¼ 0� region, while a thicker
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side layer is formed in the h ¼ 90� area. As a result, the fluid veloc-
ity is higher near the side layers and lower near the Hartmann lay-
ers. The impact of these layers in the flow is expressed via the
Lorentz force, which has the tendency to resist the fluid motion.
The Lorentz force is always retarding the fluid and it is stronger
where the velocity is higher. As shown in Fig. 14, the distribution
of the azimuthal component of the Lorentz force for Ha ¼ 25 (left)
and Ha ¼ 50 (right) is higher near the h ¼ 90� region where the
velocity is higher.

As it is already mentioned, for the case Ra ¼ 106 and Ha ¼ 0 the
flow is fully turbulent. When a magnetic field is applied, the turbu-
lent flow becomes steady state and laminar. This is happening pro-
gressively with increasing Ha number, as shown in Fig. 15, where
the time variation of the axial velocity component for Ha ¼ 0 to
50 is depicted at position (h: 180�, r: 0.5, z: 0.5). The simulations
for higher Ha were restarted from the lower Ha cases. It is observed
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that while for Ha ¼ 0 the velocity fluctuates in time, for the case
Ha ¼ 50 there is no change in time. The velocity fluctuations, as
in the case of the axial magnetic field of Fig. 11, are reduced with
increasing Ha.

As it concerns the heat transfer, the magnetic field suppresses
the fluid motion and as a result the Nusselt number decreases with
increasing Hartmann number. This is shown in Fig. 16a where the
Nusselt number distributions for the cases Ha ¼ 10;25 and 50 with
Ra ¼ 105 at h ¼ 0� are compared. It must be noted that when the
magnetic field is applied in the horizontal direction, the Nusselt
number is slightly changing azimuthally as a result of the non-axi-
symmetric flow and temperature fields. In Fig. 16b the Nusselt
number distribution is presented at the angles h ¼ 0� and h ¼ 90�

for Ra ¼ 106 and Ha ¼ 50 confirming the above observations.
Another interesting observation is that, when the magnetic field

is imposed in the axial direction, the value of the Nusselt number,
and as a consequence the heat transfer mechanism, is affected
more than for the case of the horizontal magnetic field at the same
Hartmann number. Thus, the Nusselt number is higher in the case
of the horizontal magnetic field. This is shown in Fig. 17 where the
difference of the Nusselt number corresponding to the two mag-
netic field directions is presented for the same Rayleigh and Hart-
mann numbers ðRa ¼ 106;Ha ¼ 50Þ. It is clearly shown that the
Nusselt number difference is considerable in all the upper surface,
except the region r ¼ 1. The reason is that the axial magnetic field
forms Hartmann layers at the upper and bottom surfaces (rather
than at the cylindrical wall as in the case of the horizontal mag-
netic field) and the flow is uniformly damped with less heat
convected.
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5. Conclusions

For the hydrodynamic case, the present results show that the
increase of the Rayleigh number promotes convection. For higher
Ra values, the flow is becoming turbulent and the heat transfer
is enhanced. More specifically, for the range of Ra ¼ 102 to 105,
the flow is laminar and axisymmetric, in contrast to the case
of Ra ¼ 106 where the flow is turbulent. In general, the present
flow is becoming turbulent at lower Rayleigh numbers because
of the low Prandtl number of the liquid metal. It must be noted
that only one flow pattern exists for low Rayleigh numbers,
while the increase of the Rayleigh number favors a flow separa-
tion, forming a secondary flow pattern close to the bottom cor-
ner of the cylinder.

Interesting results are obtained in the presence of the magnetic
field. For the laminar cases, the flow may or may not be axisym-
metric, depending on the magnetic field direction because of the
interaction of the Hartmann and side layers. More specifically, axi-
symmetry is not retained in the case where an horizontal magnetic
field is applied, because the magnetic field favors the formation of
jets close to the part of the cylindrical wall which is parallel to the
magnetic field. The above phenomenon is not observed when the
magnetic field is in the axial direction because uniform Hartmann
layers are formed in the upper and bottom surfaces and also, azi-
muthally symmetric side layers are formed near the vertical wall
of the cylinder.

As a result of the magnetic damping, the flow in the container is
becoming more uniform. The secondary flow pattern that may be
formed near the bottom wall always vanishes with increasing
Hartmann number, even for the most convective cases. Moreover,
when the flow for high Rayleigh numbers is in the turbulent re-
gime, the damping effect of the magnetic field reduces the velocity
fluctuations, and for high enough magnetic fields, the flow is
laminarized.

The magnetic field has also a significant effect on the heat
transfer mechanism. In all cases, the increase of Hartmann num-
ber results in a damping of the fluid motion and thus heat con-
duction progressively dominates over convection heat transfer.
For the case of a horizontal magnetic field, the local Nusselt
number depends on the azimuthal direction because of the ac-
tion of the Hartmann and side layers. Finally, the domination
of conduction heat transfer is more prominent in the case of
an axial magnetic field because of the formation of the Hart-
mann layer near the upper surface.
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